Search references:
1. | Wienhold, Kerstin S; Chen, Wei; Yin, Shanshan; Guo, Renjun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter: Following in Operando the Structure Evolution-Induced Degradation in Printed Organic Solar Cells with Nonfullerene Small Molecule Acceptor. In: Solar RRL, 4 (9), pp. 2000251, 2020. (Type: Journal Article | Abstract | Links | BibTeX) @article{Wienhold2020a, title = {Following in Operando the Structure Evolution-Induced Degradation in Printed Organic Solar Cells with Nonfullerene Small Molecule Acceptor}, author = {Kerstin S Wienhold and Wei Chen and Shanshan Yin and Renjun Guo and Matthias Schwartzkopf and Stephan V Roth and Peter Müller-Buschbaum}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.202000251}, doi = {https://doi.org/10.1002/solr.202000251}, year = {2020}, date = {2020-01-01}, journal = {Solar RRL}, volume = {4}, number = {9}, pages = {2000251}, abstract = {Understanding the degradation mechanisms of printed bulk-heterojunction (BHJ) organic solar cells during operation is essential to achieve long-term stability and realize real-world applications of organic photovoltaics. Herein, the degradation of printed organic solar cells based on the conjugated benzodithiophene polymer PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F with 0.25 vol% 1,8-diiodooctane (DIO) solvent additive is studied in operando for two different donor:acceptor ratios. The inner nano-morphology is analyzed with grazing incidence small angle X-ray scattering (GISAXS), and current–voltage (I–V) characteristics are probed simultaneously. Irrespective of the mixing ratio, degradation occurs by the same degradation mechanism. A decrease in the short-circuit current density (JSC) is identified to be the determining factor for the decline of the power conversion efficiency. The decrease in JSC is induced by a reduction of the relative interface area between the conjugated polymer and the small molecule acceptor in the BHJ structure, resembling the morphological degradation of the active layer.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Understanding the degradation mechanisms of printed bulk-heterojunction (BHJ) organic solar cells during operation is essential to achieve long-term stability and realize real-world applications of organic photovoltaics. Herein, the degradation of printed organic solar cells based on the conjugated benzodithiophene polymer PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F with 0.25 vol% 1,8-diiodooctane (DIO) solvent additive is studied in operando for two different donor:acceptor ratios. The inner nano-morphology is analyzed with grazing incidence small angle X-ray scattering (GISAXS), and current–voltage (I–V) characteristics are probed simultaneously. Irrespective of the mixing ratio, degradation occurs by the same degradation mechanism. A decrease in the short-circuit current density (JSC) is identified to be the determining factor for the decline of the power conversion efficiency. The decrease in JSC is induced by a reduction of the relative interface area between the conjugated polymer and the small molecule acceptor in the BHJ structure, resembling the morphological degradation of the active layer. |
References (last update: Sept. 23, 2024):
2020 |
Wienhold, Kerstin S; Chen, Wei; Yin, Shanshan; Guo, Renjun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter Following in Operando the Structure Evolution-Induced Degradation in Printed Organic Solar Cells with Nonfullerene Small Molecule Acceptor Journal Article Solar RRL, 4 (9), pp. 2000251, 2020. Abstract | Links | BibTeX | Tags: degradation mechanisms, meniscus-guided slot-die coatings, organic solar cells, short-circuit currents @article{Wienhold2020a, title = {Following in Operando the Structure Evolution-Induced Degradation in Printed Organic Solar Cells with Nonfullerene Small Molecule Acceptor}, author = {Kerstin S Wienhold and Wei Chen and Shanshan Yin and Renjun Guo and Matthias Schwartzkopf and Stephan V Roth and Peter Müller-Buschbaum}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.202000251}, doi = {https://doi.org/10.1002/solr.202000251}, year = {2020}, date = {2020-01-01}, journal = {Solar RRL}, volume = {4}, number = {9}, pages = {2000251}, abstract = {Understanding the degradation mechanisms of printed bulk-heterojunction (BHJ) organic solar cells during operation is essential to achieve long-term stability and realize real-world applications of organic photovoltaics. Herein, the degradation of printed organic solar cells based on the conjugated benzodithiophene polymer PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F with 0.25 vol% 1,8-diiodooctane (DIO) solvent additive is studied in operando for two different donor:acceptor ratios. The inner nano-morphology is analyzed with grazing incidence small angle X-ray scattering (GISAXS), and current–voltage (I–V) characteristics are probed simultaneously. Irrespective of the mixing ratio, degradation occurs by the same degradation mechanism. A decrease in the short-circuit current density (JSC) is identified to be the determining factor for the decline of the power conversion efficiency. The decrease in JSC is induced by a reduction of the relative interface area between the conjugated polymer and the small molecule acceptor in the BHJ structure, resembling the morphological degradation of the active layer.}, keywords = {degradation mechanisms, meniscus-guided slot-die coatings, organic solar cells, short-circuit currents}, pubstate = {published}, tppubtype = {article} } Understanding the degradation mechanisms of printed bulk-heterojunction (BHJ) organic solar cells during operation is essential to achieve long-term stability and realize real-world applications of organic photovoltaics. Herein, the degradation of printed organic solar cells based on the conjugated benzodithiophene polymer PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F with 0.25 vol% 1,8-diiodooctane (DIO) solvent additive is studied in operando for two different donor:acceptor ratios. The inner nano-morphology is analyzed with grazing incidence small angle X-ray scattering (GISAXS), and current–voltage (I–V) characteristics are probed simultaneously. Irrespective of the mixing ratio, degradation occurs by the same degradation mechanism. A decrease in the short-circuit current density (JSC) is identified to be the determining factor for the decline of the power conversion efficiency. The decrease in JSC is induced by a reduction of the relative interface area between the conjugated polymer and the small molecule acceptor in the BHJ structure, resembling the morphological degradation of the active layer. |